

WEEKLY TEST TYM TEST - 29 Balliwala SOLUTION Date 01 -12-2019

[PHYSICS]

1.
$$\frac{C_{H_2}}{C_{O_2}} = \sqrt{\frac{32}{2}} = 4$$
or
$$C_{H_2} = 4 \times C_{O_2} = 4 \times 400 \text{ ms}^{-1} = 1600 \text{ ms}^{-1}$$

2. The kinetic energy of gas w.r.t. centre of mass of the system K.E. = $\frac{5}{2}nRT$

Kinetic energy of gas w.r.t. ground = Kinetic energy of centre of mass w.r.t. ground + Kinetic energy of gas w.r.t. centre of mass.

$$K.E. = \frac{1}{2}MV^2 + \frac{5}{2}nRT$$

3. Ideal gas equation $PV = \mu RT = \left(\frac{N}{N_A}\right)RT$ where N

= Number of molecule, N_A = Avogadro number

$$\therefore \frac{N_1}{N_2} = \left(\frac{P_1}{P_2}\right) \left(\frac{V_1}{V_2}\right) \left(\frac{T_2}{T_1}\right) = \left(\frac{P}{2P}\right) \left(\frac{V}{V/4}\right) \left(\frac{2T}{T}\right) = \frac{4}{1}.$$

4.
$$C = \sqrt{\frac{3RT}{M}} \text{ or } T \propto M$$

$$\therefore \frac{T'}{T} = \frac{4}{2} = 2 \text{ or } T' = 2T$$
or
$$T = 2 \times 273 \text{ K} = 546 \text{ K}$$

- 5. or $m \propto (1/P)$ or, $m_2 > m_1$: $P_2 < P_1$
- 6. Since the graph is a straight line, so, V = mT where m is the slope. = (nRT)/P [From equation of state]

7. Given:

Initial volume $V_1 = 3V$

Initial pressure $P_1 = 2$ atmosphere.

Final pressure

$$P_2 = 2P_1 = 2 \times 2 = 4$$
 atmosphere

According to the Boyle's law we have

 $P_1V_1 = P_2V_2$ (where V_2 is the final volume of gas)

or
$$2 \times 3V = 4 \times V_2$$
 or $V_2 = 1.5 V$

- 8. For a given pressure, V is small for T_1 . Since $V \propto T$, therefore, $T_1 < T_2$.
- When, the container stops, its total kinetic energy is transferred to gas molecules in the form of translational kinetic energy, thereby increasing the absolute temperature.

Assuming n = number of moles.

Given, m = molar mass of the gas.

If ΔT = change in absolute temperature.

Then, kinetic energy of molecules due to velocity v₀,

$$\Delta K_{\text{motion}} = \frac{1}{2} (mn) v_0^2 \tag{i}$$

Increase in translational kinetic energy

$$\Delta K_{\text{translation}} = n \frac{3}{2} R(\Delta T)$$
 (ii)

According to kinetic theory Eqs. (i) and (ii) are equal

$$\Rightarrow \frac{1}{2}(mn)v_0^2 = n\frac{3}{2}R(\Delta T)$$

$$(mn)v_0^2 = n3R(\Delta T)$$

$$\Rightarrow \qquad \Delta T = \frac{(mn)v_0^2}{3nR} = \frac{mv_0^2}{3R}$$

10.
$$\frac{C_t}{C_0} = \sqrt{\frac{273 + t}{273}}$$
or
$$4 \times 273 - 273 = t$$
or
$$t = 3 \times 273 = 819^{\circ}\text{C}$$

11. 3 moles of H_2 are given.

12.
$$PV = \mu RT$$
, $PV = \frac{n}{N} \times h NT$ or $n = \frac{PV}{kT}$

13. For a constant value of density, pressure is more at T_1 .

$$\therefore T_1 > T_2 \qquad [\because P \propto T]$$

15. Initial volume of gas = V_1

Final volume of gas = V_2

Initial temperature of gas $T_1 = 27$ °C = 300 K

Final temperature of gas $T_2 = 54$ °C = 327 K

Now from the Charles's law at constant pressure

$$\frac{V_1}{V_2} = \frac{T_1}{T_2} = \frac{300}{327} = \frac{100}{109}$$

- 16.
- 17. The given statement is zeroth law of thermodynamics. It was formulated by R. H. Fowler in 1931
- 18. The internal energy of ideal gas depends only upon temperature of gas not on other factors.
- 19. For monoatomic gas, $\frac{\Delta U}{Q} = \frac{1}{3}$ or, $\Delta U = \frac{Q}{3}$

From the first law of thermodynamics,

$$Q = \Delta U + W$$
 \therefore $W = (2/3)Q$

20. $\Delta U = nC_V \Delta T = n(5/2)R\Delta T$

$$\Delta Q = nC_P \Delta T = n(7/2) R \Delta T$$

$$W = \Delta Q - \Delta U = \frac{n7}{2} R\Delta T - \frac{n5}{2} R\Delta T = nR\Delta T$$

$$\frac{W}{\Delta U} = \frac{2}{7}$$

[CHEMISTRY]

21.

NH₃ donates pair of electrons while BF₃, Cu²⁺ and AlCl₃ accept lone pair of electrons.

22.

Acid $\xrightarrow{-H^+}$ Conjugate base, Base $\xrightarrow{+H^+}$ Conjugate acid

23.

H₃O⁺ (acid), H₂O (conjugate base) and not OH⁻.

24.

pH [HCl] = 2.0
∴ [H⁺] =
$$10^{-2}$$
 M
[HCl] = 10^{-2} M
Volume = 200 mL
pH [NaOH] = 12.0
pOH = 2.0
[OH⁻] = 10^{-2} M
[NaOH] = 10^{-2} M
Volume = 300 mL
 N_1V_1 (acid) = $200 \times 10^{-2} = 2$
 N_1V_2 (base) = $300 \times 10^{-2} = 3$
 $N_2V_2 > N_1V_1$
Thus, resultant mixture basic.

N(OH⁻) =
$$\frac{N_2 V_2 - N_1 V_1}{V_1 + V_2} = \frac{3 - 2}{500} = 2 \times 10^{-3} \text{ M}$$

pOH = -log (2 × 10⁻³) = 2.7
pH = 14 - pOH 14 - 2.7 = 11.3

25.

 $K_{_{\!W}}$ changes with temperature. As temperature increases, [OH $\bar{}$] and [H $^{\!+}$] decrease.

26.

Meq. of HCl =
$$10 \times 10^{-1} = 1$$

Meq. of NaOH = $10 \times 10^{-1} = 1$

Thus both are neutralised and 1 Meq. of NaCl (a salt of strong acid and strong base) which does not hydrolyse and thus pH = 7.

27.

$$\begin{split} pK_w &= -\log K_w = -\log 1 \times 10^{-12} = 12. \\ K_w &= [\text{H}^+][\text{OH}^-] = 10^{-12} \\ [\text{H}^+] &= [\text{OH}^-] \\ &\Rightarrow \quad [\text{H}^+]^2 = 10^{-12}; \ [\text{H}^+] = 10^{-6}; \ \text{pH} = -\log [\text{H}^+] = -\log 10^{-6} = 6. \\ \text{H}_2\text{O} \ \text{is neutral because} \ [\text{H}^+] &= [\text{OH}^-] \ \text{at } 373 \ \text{K} \ \text{even when pH} = 6. \\ \text{(d) is not correct at } 373 \ \text{K}. \ \text{Water cannot become acidic.} \end{split}$$

28.

$$AB_{2}(s) \rightleftharpoons A_{s}^{2+}(aq) + 2B^{-}(aq)$$

$$K_{sp} = [A^{2+}][B^{-}]^{2} = (s)(2s)^{2} = 4s^{3}$$

$$= 4(1.0 \times 10^{-5})^{3} = 4 \times 10^{-15}$$

In the presence of 0.1 M A^{2+} , solubility is decreased due to common ion effect.

Let, solubility be = $x \text{ mol } L^{-1}$

$$AB_{2}(s) \Longrightarrow A^{2+}(aq) + 2B^{-}(aq)$$

$$A^{2+}(aq) \text{ added } = 0.1 \text{ M}$$

$$Total [A^{2+}] = (x + 0.1 \text{ M}) \approx 0.1 \text{ M}$$

$$\therefore \qquad x << 1.0 \times 10^{-5} \text{ M}$$

$$[B^{-}] = 2 \times \text{M}$$

$$\therefore \qquad [A^{2+}][B^{-}]^{2} = 4 \times 10^{-15}$$

$$(0.1)(2x)^{2} = 4 \times 10^{-15}$$

$$4x^2 = 4 \times 10^{-14}$$

 $x = 1 \times 10^{-7} \text{ M}$

 $K = K_1 \times K_2 = 1$

29.

$$\begin{aligned} \text{pH} = 4 & \Rightarrow & [\text{H}^+] = 10^{-4} \,\text{M} & \Rightarrow & [\text{OH}^-] = 10^{-10} \,\text{M} \\ & & \text{Al (OH)}_3 \Longrightarrow \text{Al}^{+3} + 3 \,\text{OH}^- \\ & K_{sp} \, (\text{Al(OH)}_3) = [\text{Al}^{+3}] \, [\text{OH}^-]^3 \\ & [\text{Al}^{3+}] \, [\text{OH}^-]_3 = 1 \times 10^{-33} \\ & [\text{Al}^{3+}] \, (10^{-10})^3 = 1 \times 10^{-33} \ \Rightarrow \ [\text{Al}^{+3}] = 10^{-3} \, \text{M} \end{aligned}$$

30.

$$K = 2 = \sqrt{k_1}$$
, $K_2 = \frac{1}{K_4}$, $K_1 = \frac{1}{K_3}$
 $K_1 K_3 = 1$, $\sqrt{K_1}$ $K_4 = 1$ $\sqrt{K_3}$ = 1

31.

32.

33.

34.

35.

The equilibrium constant of second reaction is very large and hence the equilibrium concentrations may be determined by adding the reactions. On adding,

Now,
$$K = \frac{[D][E]}{[A][B]} = \frac{\left(\frac{x}{2}\right) \cdot \left(\frac{x}{3}\right)}{\left(\frac{2-x}{2}\right) \cdot \left(\frac{5-x}{2}\right)}$$
 or,
$$1 = \frac{x^2}{(2-x)(5-x)}$$
 or
$$x = 1.428$$
 Now, for first reaction,
$$K_1 = \frac{[C][D]}{[A]}$$
 or,
$$5 \times 10^{-6} = \frac{[C]\left(\frac{x}{2}\right)}{\left(\frac{2-x}{2}\right)}$$

$$\therefore \qquad [C] = 2 \times 10^{-6} \text{ M}$$

36. Example 39 Some solid NH₄HS is introduced in a vessel containing NH₃ gas at 0.5 atm. Calculate the equilibrium partial pressures of gases. For the reaction:

 $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g), K_p = 0.12 \text{ atm}^2.$

Now,

 $K_p = P_{NH_3} \cdot P_{H_2S}$

or,

 $0.12 = (0.5 + x) \times x$

or,

x = 0.177

Hence, equilibrium pressure of $NH_3 = 0.5 + x = 0.677$ atm

 $H_2S = x = 0.177$ atm

Now,
$$K = \frac{[D][E]}{[A][B]} = \frac{\left(\frac{x}{2}\right) \cdot \left(\frac{x}{3}\right)}{\left(\frac{2-x}{2}\right) \cdot \left(\frac{5-x}{2}\right)}$$
or,
$$1 = \frac{x^2}{(2-x)(5-x)}$$
or
$$x = 1.428$$
Now, for first reaction,
$$K_1 = \frac{[C][D]}{[A]}$$
or,
$$5 \times 10^{-6} = \frac{\left[C\right]\left(\frac{x}{2}\right)}{\left(\frac{2-x}{2}\right)}$$

$$\therefore \qquad [C] = 2 \times 10^{-6} \text{ M}$$

37.
$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$$
Initial moles 1 (say) 0 0 0
Moles at equ. $1-\alpha$ α α α
Total moles at equ. $= (1-\alpha) + \alpha + \alpha = 1 + \alpha$
Equ. par pressure $\frac{1-\alpha}{1+\alpha} \cdot P$ $\frac{\alpha}{1+\alpha} \cdot P$ $\frac{\alpha}{1+\alpha} \cdot P$

Now, $K_{p} = \frac{P_{PCl_{3}} \cdot P_{Cl_{2}}}{P_{PCl_{5}}} = \frac{\left(\frac{\alpha}{1+\alpha} \cdot P\right)\left(\frac{\alpha}{1+\alpha} \cdot P\right)}{\left(\frac{1-\alpha}{1+\alpha} \cdot P\right)} = \frac{\alpha^{2}P}{1-\alpha^{2}}$
or, $0.2 = \frac{\alpha^{2} \times 4}{1-\alpha^{2}}$
 $\therefore \qquad \alpha = \mathbf{0.218}$